

Biodegradable polymers as energy efficient replacement of polymers from fossil fuels Kevin Henderson June 5, 2008

Outline

- Motivation
- Types of BPs
 - Starch based
 - Poly(lactides)
 - Poly(hydroxyalkanoates)
- Life Cycle Analyses
- Conclusions/Future Direction

Motivation

- Plastics/polymer production exceeds 450 billion pounds per year!
 - That's **3 billion Kevins** of material by weight.
- The feedstock/fossil fuel energy used in the production of plastic is ~10% of total oil consumption
- Changing to a renewable feedstock could save 270 million tons of oil annually

Perspective

U.S. Energy Flow Trends – 2002 Net Primary Resource Consumption ~97 Quads

Source: Production and end-use data from Energy Information Administration, Annual Energy Review 2002. *Net fossil-fuel electrical imports. **Biomass/other includes wood, waste, alcohol, geothermal, solar, and wind. June 2004 Lawrence Livermore National Laboratory http://eed.lini.gov/flow

Solution?

•Use renewable feedstock from nature Biodegradable polymers!

Advantages
 Eliminate fossil fuels as feedstocks

 Saves millions of barrels of oil for use in other applications
 More environmentally friendly?
 Plastic accounts for 12% of solid municipal waste

Disadvantages
Not as well developed
Current output is 0.1% of petroleum based polymer

Types of BPs

Starch	Polyester		
	PLA	PHA	
•Made from corn	•Made from corn	•Made from corn	
•Chains are amylose and amylopectin	•Chains are lactic acid	•Chains are hydroxy alkanoates	
•Naturally available- made by grinding components of corn	•Made by fermentation of glucose	•Made by fermentation of glucose or directly in bacterial or plant cells	

Life Cycle Analysis

Life Cycle Analysis

	Source	CO ₂ (kg/kg)	Fossil Energy (MJ/kg)	
РНА/РНВ	PHA: Gerngross (1999) ¹¹	2.4	50.4	
	PHA: Kurdikar (2001) ⁵	2.0		
	PHA: Akiyama (2003) ⁴	0.26-0.45	50-59	
	PHB: Nonato (2001) ¹²		113.7	
	PHB: Harding (2007) ¹³	2.6	44.7	
PLA	Bohlman (2001) ¹⁴	0005	56.7	
	Vink (2003) ⁸	1.8	54	
	Vink (2007) ¹⁵	0.27	27.2	
Starch	Mator Riv	1 70	E3 1	
New technology and				
optimization is making BPs				
more energy efficient				

Mirel by Metabolix

- Claim to reduce fossil fuel use by 95% and 200% reduction in CO2 emission
- Employs bacterial fermentation for PHA production

NatureWorks PLA

production systems

How much land is necessary?

- NatureWorks reports 1.65 m² land requirement for producing 1 kg of PLA
- Total cropland in US: 1.8 trillion m²
- Could meet entire polymers production worldwide with 18% of current cropland
- Could meet North American consumption with 4.8%

Issues

Very complex topic- many points to consider

- Effect on food cost/production
- Recycling compatibility with current polymers
- CO2 emission from biodegradation
- Landfill space requirements for polymers
- Concern with GMO's
- Mechanical properties of BPs
- Production capability in coming years
- Cost of technology

Future Directions

- Using non-edible portions of plant to grow polymer at same time as another crop
- Cellulose-based fermentation
- Specialty facilities for biodegradation of polymer/recovery of fuel produced
- Cost-competitiveness with oil as prices increase

Conclusions

- Polymeric materials are used in a substantial amount of consumer goods, and have properties not available in other materials
- With depletion of oil reserves, plastics production will become more expensive and difficult
- A lot of controversy behind BPs but a lot of potential demonstrated within the past 2-3 years
- Sequestration versus landfilling

Questions?